to admit air into the base for supplying the combustion-chamber with oxygen.

E represents a cylindrical valve-casing fitted snugly in a correspondingly-shaped open-5 ing in the cylinder-head C. This casing contains the valve for controlling the oil and air passage which supplies the combustible fluid to the combustion-chamber B', and also contains the exhaust - valve controlling the ex-10 haust-ports through which the products of combustion are discharged.

e represents the supply-pipe for the compressed air, and e' is the oil-supply pipe, both of which enter the head  $e^2$  of the valve-casing 15 at its side and communicate with a central receiving-chamber  $e^3$ , formed in the head of the valve-casing, the oil-pipe being arranged near the bottom of the receiving-chamber and the air-pipe near the top thereof. The re-20 ceiving-chamber  $e^3$  is closed at its upper end by a head  $e^4$ , provided with a stuffing-box, and

communicates at its bottom with a passage

 $e^5$ , formed in a stem  $e^6$ , depending centrally from the head  $e^2$ .

f represents the oil and air induction valve arranged in the receiving-chamber  $e^3$  and seated in the tapering bottom of the latter, so as to close the passage  $e^5$ . The valve f is held on its seat by a spring f', surrounding the 30 upwardly-extending valve-rod  $f^2$  and bearing with its ends against the induction-valve and the head  $e^4$ . The valve-rod passes upwardly through the stuffing-box of the head  $e^4$ , and is provided at its upper end with a thumb-35 nut  $f^3$ , which bears on the upper side of a rock-lever F, pivoted to the standard  $f^4$ . The induction-valve f is raised from its seat at regular intervals by this lever, to allow the oil and compressed air to pass from the re-40 ceiving-chamber into the passage  $e^5$ .

 $e^7$  represents a tube secured to the lower end of the hollow stem  $e^6$  and forming an extension of the passage  $e^5$ . The lower end of the tube  $e^{\tau}$  is provided with a deflecting-cup 45  $e^8$ , which is arranged slightly below the open end of the tube and provided between the latter and its upturned marginal flange with a cover  $e^9$ , of finely-perforated sheet metal or wire-gauze. The cup receives the oil and air 50 from the passage  $e^5$  and tube  $e^7$  and deflects the mixture upwardly, while the gauze cover divides the mixture into a finely-divided spray, which is the most favorable condition for instantaneous ignition and combustion.

G represents a burner secured to the side of the cylinder and arranged in the combustion-chamber directly in the path of the upwardly-sprayed oil, so as to ignite the same instantly.

 $e^{i0}$  represents a concave disk about half the diameter of the cylinder and secured to the tube  $e^{\tau}$  at its point of junction with the hollow stem  $e^6$ . This disk, which becomes intensely heated by the combustion of the suc-65 cessive charges in the combustion-chamber, intercepts any particles of the upwardlyinstantly converts them into vapor and causes them to be consumed with the rest of the charge.

II represents the circular exhaust-valve, provided with an upwardly-extending sleeve h, which surrounds the valve-stem  $e^6$  and is capable of vertical movement thereon. The peripheral face of the exhaust-valve tapers 75 upwardly and fits a correspondingly-shaped seat h', formed at the lower end of the valvecasing. The interior cavity of this valvecasing, whose lower end is closed by the exhaust-valve, forms an exhaust-chamber  $h^2$ .

 $h^3$  represents an exhaust-passage surrounding the valve-casing on the inside of the water-jacket of the cylinder-head, and h4 are ports formed in the sides of the valve-casing, so as to establish communication between the 85 exhaust-chamber and the exhaust-passage.

The cylinder B and its head C are both provided with water-jackets c c', to avoid excessive heating. The cylindrical body of the valve-casing extends through the water- 90 jacket of the cylinder-head, and is secured

thereon by bolts e''.

 $h^5$  represents two rods whereby the exhaustvalve is actuated, and which pass vertically through openings in the head of the valve- 95 casing and engage with their lower hooked ends in an annular groove  $h^6$ , formed in the sleeve h. The rods  $h^5$  are connected at their upper ends by a bar  $h^7$ , which bears against the lower side of the rock-lever F, and by 100 which the rods are lowered and the exhaust-valve is opened. The latter is held on its seat by means of springs  $h^8$ , which surround the rods  $h^5$  and bear with their ends against the cross-bar  $h^7$  and the head of the valve- 105 casing. The exhaust-valve is opened periodically by the descent of the lever F, and allows the products of combustion after each explosion to be discharged into the exhaustchamber, thence into the exhaust-passage iic through the ports  $h^4$ , and thence into an exhaust-pipe  $h^9$ .

The induction-valve and exhaust-valve are actuated alternately by the rock-lever F. In the position shown in Fig. 3 the lever F is in 115 its normal position, in which position both the induction and exhaust valves are closed. For the purpose of admitting the liquid fuel to the combustion-chamber, the rock-lever is quickly raised above its normal position and 120 returned to the same. This movement of the rock-lever opens the induction-valve momentarily and causes a quantity of liquid fuel to be delivered into the combustion-chamber by a gust of compressed air. For the purpose of 125 exhausting the products of combustion, the rock-lever is lowered beyond its normal position, whereby the exhaust-valve is opened.

The burner G for igniting the charges of sprayed fuel is arranged horizontally in the 130 combustion-chamber and secured to the cylinder by means of a tube g, which supplies oil and air to the burner. The tube g is sprayed fuel which may escape ignition, and I screwed into the end of a plug g', which is